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SIGNIFICANCE AND EXPLANATION

The uniqueness property for solutions of an initial-value problem turns

out to be a fundamental tool which interacts with many other questions of a

qualitative nature. For an evolution equation that is supposed to serve as a

model for a natural phenomenon, it is often crucial if one wants the model to

be crediblew-

The equations of the type

(Z) ut - Ao(uJ - 0 in (0,-) x R

where 0: [0,-) + [0,m) is nondecreasing, arise in many applications. These

include the flow of a gas through a porous medium, the spatial spread of

biological populations, the interstellar diffusion of galactic civilizations,

the heat flow in a material with a temperature dependent conductivity, the so-

called Stefan-problem, some problems in plasma physics, etc. AThe variety of

these applications explains the abundant literature concerning uniqueness for

such problems.-

This paper is a new contribution to this question. It deals with the

case when the initial datum is a measure, (Z) being understood in the sense of

distributions. Thanks to this general setting, it recovers most of the

previous results and takes into account a larger number of physical models.

But its main interest comes from the fact that it solves the *rightO unique-

ness question in a form which arises in many other related questions. For

instance the study of the asymptotic behavior of the solutions of (3) can be

reduced to this type of a uniqueness problem with a Dirac mass as initial

datum.-

The responsibility for the wording and views expressed in this descriptive
sumary lies with NRC, and not with the author of this report.
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UNIQUENESS OF THE SOLUTIONS OF ut- Ajp(u) w 0

WITH INITIAL DATUM A MEASURE

Michel Pierre

Let us first state the main result of this paper. Let

[0(,-) + CO,-) be nondecreasing, locally Lipschitz and sp(O) -0. Let us

consider the problem

)(1) u e L ((0,T) R 0) n L (('r,T) x R ) Vr C (0,T)

V(2) ut AV(u) - 0 in V'((0,T) XR N)

N
vhere "in V'((0,T) x R )"means "in the sense of distributions in

(0,T) x H-

THEOREM 1. Let u and Ube two nonnegative solutions of (P). If N I or

2, assume also that O(u), 0(al) C L 1((0,T) x RN). Then

(3) lim ess u(t) - ;(t) -0 in DIMRN)
t+0

implies u -u

A lot of papers have already been concerned with the uniqueness of the

solutions of problem (2) especially in the particular case of the porous media

equation ut - &umm- 0. See, for example, Oleinik (19], Xalashnikov (12],

Gilding and Peletier (10], Kamin (13] for one space variable, vol'pert and

Hudjaev (22], Sabinina (20] and finally Brezis and Crandall (6] in the general

* case.* In the latter work which recovers most of the previous uniqueness

results contained in the above, the initial value is assumed to be in L1 (RN)

(or L (KO) and (3) holds in L(1)

Sponsored by the United States Army under Contract No. DAAG29-S-C-004 * This
material is based upon work supported by the National Science Foundation under
Grant too. HCS-7927062.



Here the initial value is only a finite measure which is the limit of

u(t) in the sense of measure (onlyl) - its existence is implied by (1) and

(2) (see lemma 2). This leads to a more sophisticated analysis whose main

difficulty is solved by using precise properties of the potentials of the

functions u(t) for N ) 3. A different proof for N - 1,2 is necessary due

to the non-existence of potentialsi it requires V(u) C LI which is in fact

implied by-(1), (2) in the cases of interest (see remark 3 and theorem 4).

Among the uniqueness results mentioned above, only Kamin in (13] considers the

case of a measure as initial data in the particular case of dimension 1 with a

Dirac mass.

Here our proof is quite general and not particular to RN. It would

carry over to equation (2) in a bounded domain 9 of RN with Dirichlet or

Neumann boundary conditions.

The section 1 is devoted to the proof of theorem 1. In the section 2, we

state an existence theorem for solutions of (P) whose initial value is a given

nonnegative finite measure. We also study the dependence on the initial data.

Some last comments about motivations. The equation (2) arises in many

applications. We will not recall them here since they can be found in most of

the papers mentioned above or in the references they contain (see also [18]

for a survey about the porous media equation). The case when the initial

datum is a measure is also a model for physical phenomena (see [13] and [23]

p. 677). Moreover it arises in several mathematical questions. One example

is the study of the asymptotic behavior for the solutions of the porous media

equation which can be reduced to the uniqueness problem with a Dirac mass as

initial data (see Friedman-Kamin (111, Kamin (151).
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SUCTION 1

We deote by C (R) (reap. Cb( A)) the set of continuous functions on

UP with compact support (reap. bounded) and by M(RN ) (reap. M+(R")) the

aot of finite (reap. and nonnegative) Radon measures on RV. A sequence

SnCM(R N ) in said to be converging to is in aWO(R), CY(RN)) (reap.

U(M(RN), CblaOl") if, for any o C Cc(R N ) (resp. j CV I)

li fra Njdun" f %o "

Case N ) 3

Let N(x) - 1 where SN  is the surface of the unit N-•N (3-2)s5 I x s-

SN
sphere. For u, i solutions of (P) we denote

a.e. t C (0,T), v(t) - * u(t), v(t) - I N  U(t)

Since ut, C L (N) n L(3?), v(t) e cb(3) n LP(RN for p >-I. (This

follows from elementary properties of the convolution in Ra.)

Lemma 2. If u is a nonnegative solution of (P), u(t) converges in

a(M(R ), Cb(RN)) to some P E + (R) when t + 0 essentially. Moreover

when t decreases to 0, v(tx) increases to v(0,x) - (XN * )(x) for

all x C Re.

(Note that v(O,x) is lower semi-continuous and is the usual potential

of the finite measure u).

Proof of leme 2

The relation (2) implies that

-3-



t
(4) a.e. 0 < a 4 t 4 T, u(t) - U(s) - hf o(u(a))da in V'(RN)

a

This in easily obtained by multiplying (2) by test-functions a (t)e(x)
n

e t V(?) and an(t) V(0,T) converging to l,,,t ]  in a suitable way.

Note that te, v assumptions on 0 together with (1) imply

(5) V(u) C L ((T,T) xR ((,T) X RN), yT c (0,T)

Actually the relation (4) defines u(t) for all t 6 (0,T]. Moreover sincet1N

u(t) - u(s) and f 0(u(q))do C L I(RN), for all 0 < 9 4 t 4 T:
5

(6) N ut) - Jt u(s)

t t

(7) v(t) - v - * (A f uW-/ f p(u(ca))do - 0 a.e. on R'
a 8

In (7),we use a uniqueness result (see e.g. [4] lenma A.5).

The relation (6) implies the relative compactness of (u(t) I t E (0,T)l

in G(I(RR), C c(RN )). The monotonicity proves the uniqueness of the limit U

of u(t) and the second part of the lemma (see e.g. (17] theorems 0.6, 3.8,

3.9 about potentials of measures). Moreover

VW 4 V,,) AvNt) N Av(o)

Hence f I ugt) converge to f - Av(O) - f N and u(t) converges to
0 in o(M(RN), Cb(RN)).
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Proof of theorem 1 for N >' 3

Let h e ]O,T[ be fixed. if u arnd ui are solutions of (P), by (4) we

have

*(a) VO <s 4t <t+h <T,
t

(u(t) - u(t+h)) - (u(s) - (s+h)) -A f ['(u(a)) - (a(a+h))]da

NS

Letting a go to 0 gives inDI

t
(9) (u(t) - a(t+h)) - (ui - UG(h)) -A f Ev(u(a)) - fiah)d

0

t t
Remark that s * f '(umod is nondecreasing and A f (u(c))da is

a 0

bounded in L IMP). By the results in [4) (lemmna A.5), it converges in

1 N
L o a) to f 0 v(u(a))da. Let us denote

9(t) - f [p(u(Oy)) - 0 (a(a+h)] do + v(h) - v(0)

0

Then (9) can be written as

u(t) - ;(t+h) - Ag(t) (4..*g(t) - (t+h) -v(t))

where v(t) is defined in lemma 2. This implies

(10) gt(t) - a(t) Ag(t)

where



f u(tx)) - 0(^(t+h,x))u(t,x) -^ '~hx if u(t,x) 9' ;(t~h,x)

a(t,x) -
0 if u(t,x) - U(t+h,x)

The function a is nonnegative and is in L((T,T) x RN ) for any

T V (0,T). Hence g is solution of a linear equation moreover if

lir u(t) - lim u(t), g(0) - ;(h) - v(O) is nonpositive by lemma 2. If
t+0 t+0
a(-) were regular enough, by the maximum principle applied to (10) we would

obtain

(11) V0 < t < t+h < T, g(t) - v(t+h) - v(t) 4 0

And that would imply v C v, and, by a symmetric argument Iv - v and ^U - u.

What follows is to justify this maximum principle for the equation (10) in our

particular case. The method consists in multiplying (10) by the solution

of the dual problem * t + A(a*) - 0, 6CT) - e C p+(R N), 0 < T+h ( T, which

formally gives

fJRN g(i)e - f e g(s)4(a)

(I(R N ) denotes the space of nonnegative C -functions with compact support

in RN).

Then, we show that the right-hand side has a nonpositive limit when s 4 0.

The first step is to "solve" the above equation. For this let us

approximate a by a e C7([0,T] x R"), nonnegative and satisfying:

-6-



a, I 1, Aa pare bounded on [0,] x RN for any p

N
yT C (0,T), a is bounded on [T,T) x R independently of p
p

a pconverges to a ase(tx) e (O0,T) x R

(For instance, one can mollify a and multiply by a C -function equal to

I for lxi 4 p and equal to 0 for Ixi > p+1).

Then, C > 0 being fixed we consider the dual problem

(12) ' p + A((a +e)*) - 0, * = () e D (R

where 0 < T+h < T. For simplicity we still denote T by T. It is well-

known that this problem has a nonnegative C -solution such that

4(t) C Ll (C N )nL CRN ) for all t (see [16]).

Now, multiply equation (10) by *p and integrate to obtain:

T

N g(T)G - N g(s)1 (a) f fz (N(C) (a) + a(a) (C)Ag(co))dO
R R a

(13)
T

- f f (a - a - e), (o)Ag(o)da

In order to pass to the limit in p for s C (O,T), let us make some

estimates on 41 For convenience we denote

p

H Ct) t) (--.AH (t) - ,p(t))
14 N *1 p p

Multiplying (12) by Hp(t) gives

It 2 N IVH (t)I2 fN (a +E)*2

7; R N p p
(14)

I I 1V812 .~ I f VH (t)1 2 + f T f 2
2 N 2 V N (a sR p pV

R 1PR

-7-



This proves that 4p is bounded in L2 (0,T;RN); it has a subsequence weakly

converging to *re Then (a +)*p also weakly converges to (a+e)* in
£ p p

2 14
L2((T,T) xR ) for any T e (0,T). Hence the limit satisfies, in

an integrated form of (12), namely

t
(15) VO < s < t 4 T (t) - 4(s) - -A f (a+s)*'

s

Since f 4t) = f , p (t) is bounded in LI(0). Hence e is in
Be R

L1( N) and by (15)

(16) f N *'(t) N

Moreover, one can assume that p (t) converges to 4'(t) in a(9(0),

Cb(RN)) for all t > 0.

Now (13) becomes:

T
(17) fRN g(T)O - fRN g(s)*C (s) - -Cs f fN *C ()Ag(a)d •

(Remember that Ag(t) = u(t) - u(t+h) is bounded in any Lp((s,T) x R

and ap converges to a a.e. on (s,T) x RN  and is uniformly bounded.)

Now we let £ O. For any s £ (0,T), the right-hand side of (17) is

bounded by

T
m lhgl RN) f1 N

L ((s,t) x R ) s L(R

which converges to 0 since 4' is bounded in L (0,T,L (RN)) by (16). If

H (t) M E * 4'(t), integrating (15) gives
£ -8-
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tH (t) -H (S) = J(a+)*,

s

By the nonnegativity of 'c and He this implies

0 4 HE (t) 4 HC(T) = E *

Hence H is bounded in Lp(0,T) x RN ) for p > 2 and one can find
CN-

convex combinations of these H converging a.e. and strongly to H in

Lp((0,T) x RN) for some p c (N--±2,c). Since * (s) is uniformly bounded

in L( 1), we can assume that the same combinations of 'eP(s) converge

a.e. s in a(M(R N), Cc(R)) to V(s) e M(RN). In order to pass to the

limit in (17), we need a convergence in (M(R N), Cb(RN)). This comes from

the fact that

(18) Vs C t0,T), fRN dv(s) = f e =ln f N * -(s)
R R eO R

T

Indeed, for any s s (0,T), f (a+e)P is bounded in Ll RN). Hence, by (15)
+ S

there exists pts) e M such that

v(s) = -Ap(s) in N(RN )

This together with (16) implies (18).

We finally obtain the existence of a family of nonnegative finite

measures {V(s), s e (0,T)) such that

(19) Vs C (O,T) f gtT)e f N gts)dts)
RN R

-9-



and

(20) s H(S) EN V(s) is nondecreasing on (0,T)

((20) comes from the monotonicity of H ),

Now, g(s) = v(s+h) - v(s); by the monotonicity results of lemma 2, (19)

gives

(21) '0 < s < so

f N g(T) < fN ('^(h) - v(s0 ))dv(s) f N (u(h) - u(s0 ))H(s)
R R? R

(See the remarks below for the integration by part.) But fN dy(s) is

bounded independently of s and H(s) decreases pointwise when s decreases

to 0. Hence V = -AH(0 + ) C 9+(R N ) and by (21)

(22) VO < s0 ,

f RN 1T)6 -4 f RN (a0h) - 0s0)).10+ ) - fRN ((h) v(s0))dv

Now letting so decrease to 0 gives by monotonicity

(23) f g(T)O ~ f ('(h) - v(0))dv

RN

But v(0,x) = 4(0,x) ) v(h,x) for all x c RN . Hence

6 c R (N), f g(T)O 4 0

-10-



This implies the relation (11) we were looking for.

Remark 1. In the above we often use the fact that given p,v c 9*(0):

(24) f N 1 d RN (%*V)d

whatever this integral is finite or not. In (22), (0+) is the decreasing

limit of the potentials H(s). It is generally not a I.s.c. potential itself

but is equal a.e. to EN * v. Since u(h) - u(s0 ) is a "good3 function, the

integration by part works. It would not for h - 0, for u(0) is only a

measure (see e.g. [17] for more details).

Remark 2. The same method would give a similar uniqueness result for the

equation

ut - MD(u) in D'((0,T) x 0)

"40(u) -o0 on W~ (or 1 Pu n3anWU f

u(t) + P in O(M(RN), Cb 0))

with Q a regular bounded open subset of N , by using the "potentials"

v(t) solutions of

- ~Av(t) - u(t)

anv(t) - 0 on @ (or nv(t) - 0 on @

This method would clearly contain the cases N - 1,2.

Remark 3. There is no potential in RN  if N - 1,2. Hence we have to do the

above computations in an "approximated" way using the solutions of



i aVa(t) "AvOIlt) = u(t),

and letting a go to 0. This requires more a priori assumptions on the

solution u, namely O(u) E LI ((O,T) x Re). This is implied by (1), (2) in

most cases of interest, like the porous media case O(r) - rm  (see theorem 4)

or the Stefan problem case j(r) - (r-1) +  (since u C L1((O,T) x RN)). It

was also proved in [14], that this always holds in dimension I with very weak

assumptions on 0.

Proof of theorem 1 for N - 1,2.

Since there is no potential in le if N - 1,2, we will use the

solutions of

(25) Y t > 0 av0t) -Ava(t) - u(t), ava(t) - a (t) -u(t

For a > 0, (a-A)"1  is a "good" operator even when N - 1,2 and in

particular (see e.g. (4] lema 1.1):

UMt C L1RN ) n 1 (t) E L1 (? n C.(RN)

We will denote K the kernel associated with (a-A)- , i.e.a

v (t) - K * u(t). The result corresponding to lemma 2 is:

Lemma 3. If u ) 0 is a solution of (P), u(t) converges in

(WR N), Cb(RN)) to some p c M+(RN) when t + 0. Moreover when t

decreases to 0, v (t,x) + a K * f O(u(0))da increases toT a t

aK* 1a + a f lu(a)) a(x) for all x C RN and all T e (0,T).

-12-



T

Note that for T 6 (0,T) fixed, Ka f f (u(o))d0 in continuous and
t

when t decreases to 0, it increases to the A.s.c. function

Ka * f sP(u(lo)dO which is well-defined since f v (u(o))dO 9 LI (3) by0 0

assumption on o.

T
If wa(t) va(t) + a K * f (u(O))da, we have for 0 < s < t:

t

t

wat) - w a(s) - K.(u(t) - u(s) - a f w(u(O))do)a

t t
- K *((A-a) f (u(Oa)da) - - f (uo))da 4 0 a.e.

5 5

This proves the second part of the lemma. Then we finish as in lemma 2 using

that

f Hu~t) f OLv Wt+f a av (0) ~
e RN a R1 RN

Now to replace the function g of the previous proof, we introduce for

h > 0 fixed:

ft t

gait) - G()do + valh) - va(O) - a(a-A) 1 f G(Oad
0 0

where we denote G(W) - '(u(o)) - P(u~+h)). Then we verify

(26) (a-A)gaCt) - u(t+h) - u(t) gaCt) - '(t+h) - v (t))

-L -13-



(27) gat + a(a'A)ga(t) - -ala-) lG(t) 4 a Ka * V((t+h))

where a is defined in the previous proof.

Now, we do the same computations as for N 3 with the operator *-A

instead of -6 and we obtain - like in (19), (20) - the existence of

(Va (s) M+ (RN), a £ (0,T)) such that, for 6 e V +(N):

Vs C (0,T)

(28)
TgnsdVs) f Ri  fR" ((ah)) a(a)fNgalTlOe. •R gal*ldva,(s) + f afWa K a *0'(~)d.

(29) s H (a) - K0 * V (a) is nondecreasing on (0,T)

By lemma 3, for all T C (0,T) and 0 < a < no:

ga(s) 4 [;a(h) + a K * f 0(u(o+h))do]

(30)
T

[v a0+ a a * f O(u(a))do] + a X * f G(O)do

Now we can pass to the limit when s + 0 as in (22). The last term of (30)

is easily controlled after integration by part.

-0 N g (s)dIa(s)s+ 0 Rx

(f N (h) +a x a* f 0(;(a+h))do - v a(s -a K f O(u(o)).d a

T
+ f a 0 a ( fo G*O)& .

R 0

-14-



with V - ha v (a) and N (0 +  - K * vaog. we lot 8 decrease to

9+0
0 aboe s th o notnicity etablished in 1a 3 to obtain

0

Finally, coming back to (26) and remarking that Ha) 4 H C?) = K * we

have, for any 0 c 0+(e),

h T
fam g(m)e ( f a K * f0(u(O))dv + fo fme a K ,(a (c+h))

Hence

T+h

g.(T) (aK. *f a (1(a))d .

Now we let h, then a go to 0. For any f C La(w), a - a f

converges to 0 in V'() when a . 0. indeed, f -? Q W 0 f implies

the convergence of anw to some v c M+(R"). The relation

n

a 2lwa - A(a ) - af implies that Av -0. Hence v -0. Coming back to the

definition of go(T), we obtain

T
! S~ olu(ol) - (u(Gl) ( 0

0

This comletes the proof*

Rark. Thanks to the lam 2 and 3, the condition (3) in theorem 1 can be

weakened to the requirement

-15-



(3)' . I h - at,,d, - 0 in P(R")
h+'O h0

This may be useful in view of the existing literature where the solutions are

often defined as functions u satisfying (1) and

fo fe Us + C'UM + fVu(0)*() - 0

for any # C C;([0,T[ X RU). Clearly two solutions u and u of the above

satisfy (2) and (3)'.

-16-



SECTION 1I. Existence results and dependence on the initial data.
M+1

THEOREM 4. Let m ) I and p C M ( ). Then there exists a unique non-

negative u C C((O,-); L (RN)) n Lm((T,m) X RN ) for all T > 0 such that

(31) ut - Aum  in D'((O,-) x AN)

(32) u(t) + U in O(M(RN), Cb(RN)) when t + 0

If u is another such solution with initial data P e M (RN)

(33) Vt C (0,) f N lu(t) - a(t)l 4 fN I-ii

Moreover, if In e M+(R N ) converges to V in N(M(R ), Cb(RN)), the

associated solutions Un(t) converge to u(t) in LI(R N ) for all t > 0.

Remark 4. If P is the Dirac mass 6 at the origin, the solution of (31),

(32) has been explicitly determined (see Barenblatt [2]). It is given by

-k k(m-1) + rn-1
u(t,x) t- [(a k/N2mN t k /

-1 2

where k M-1 + and a is a constant depending on m and N in such a

way that f u(t) 1.

Remark 5. The proof of the above result contains several ingredients. First

the existence of a solution to (31) when the initial data is regular. This

was proved in [20]. It can also be obtained as a consequence of the abstract

theory of evolution equations governed by accretive operators which carries

-17-



over to the more general equation (2) (see (5]). Then, approximating U by

Wregular" functions P n, one has to prove that the solution of (31) with

initial data Pn converges to the solution of (31) - (32). This needs some

compactness arguments that can be obtained through two different ways. One

can use that

f NlauI " ttt f u °

RN RN R 1

as proved in (1. Actually this method would apply to (2) for the general

class of functions p described in [] Here we will use, in conjunction

with some direct estimates in (31), the L -regularizing effect which says

that the solution of (31) belongs to L ((T,-) x R ) for any T > 0. The

latter property - which is needed to apply our uniqueness result - is also

true for equation (2) with very weak assumptions on 0. To illustrate the

generality of this method let us establish, at least for N 0 3, a more

general existence result.

Let us consider 4P : [0,v) + [0,-) locally Lipschitz, nondecreasing,

V(0) - 0. Assume N ) 3 and for instance (see (3]):

H-2 1/ct
(34) Sa > -2 such that (fi(r)) is convex for r large

N

Then we have

-1O-



PROPOSITION 5. For all It eM +RN) there exists a unique non-
"_____)____(_,0)x_____o a ll >0

negative u c L ((0,-)1 LIRN)) n x R) for all T > 0, solution of

ut - AW(u) in X',-) x RN)

u(t) + v in uAMRN), Cb(R")) when t + 0

Moreover the estimate (33) holds.

Remark 6. The assumption (34) insures that u e L*((T,-) x R") for T > 0.

A slightly different assumption can be found in [21].

Proof of Proposition 5.

Let Un C L (I?) nonnegative and converging to t in a(M(RN),
nm

Cb(t)). By the existence results in (5) and the L -regularizing effectsLI

established in (3], there exists u C C([O,-) L (RN)) n L ((ra) x RN) forn

any T > 0 such that

N(35) Unt A&(u) in D'((0,-) x R)

U(0) "n n

(36) lU (t)I 4 K + , K, 0 y > 0

where K, K0 , y depend only on Iinl II , op and N. Remark that un is

uniformly bounded in C([0,-), L I(RN)) since f u (t) f(35).
N n nR R"

Let us make some formal estimates now. multiplying (35) by 4P(u,)t yields:
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(37) ~a n f V(u 2""fN nt 0(u)t 4 o

R R t n

Multiplying (35) by v(un ) and integrating give for 0 < T < t

t

(38) f f IVI(u)1 2 f N ( - ,(u(t)) ,

r

where +(r) =f (o)d. Since un (T) is bounded in L independently of n

0
(see (36)), this implies that Vl'u n) is uniformly bounded in

L2  ((0,) X RN). By (37), Vo(u ) is even uniformly bounded in
loc n

2 2N
L (T,, L (R )) for any T > 0. Hence, integrating (37) proves that

f fRN Unt 0(un)t is bounded for any T > 0. Since 0 is locally

Lipschitz, we obtain that f f N [(Un)tJ2 is bounded. Finally we deduce
Tc R

that

,pu is bounded in W RN

the bound depends only on sup INnll
n

The formal computation (38) can be justified like in (5] - Prop. 10. For the

other ones, we use (u(t+h)) - p(u(t)) and let h go to 0.

By (39), there exists a subsequence (still denoted sp(un)) converging in

L 2 ((0) x RN ) and a.e. to some w. On the other hand, a subsequence of
oc0

un converges weakly in L2(K) for any compact K c (0,) x R and the

limit u satisfies w(t,x) 0(u(t,x)) aee. since 'P is a maximal monotone

operator in L2(K) (see (7] prop. 2.5). Clearly

u C L7(0,T, L (N)) n x(1r,-1 K RN) for all T > 0 and satisfies
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Wh-3 -=

NN

It remains to show that Ui - lrn ess u(t) (in a(M(R )C(R) which exists '

by lemma 1, is equal to Pi (nto that f d f dii).

For this, let us assume we have chosen U. W u * pn with

PnW - X Nn p(nlxI) Yx e R Nwhere p e CO([0,-)] is supported in (0,1] and

IX is a constant such that f p? -n 1. with this choice (see [17])

n V n "n is nondecreasing (and V n icesspit et

v- 0 ). Hence

n+vn W u ntW is nondecreasing

Indeed vn t is a solution of vn + p(-Av )-0, V (0) -V 0and one can

use the maximum principle for this equation (see e.g. (9])). Since

f - AVn~t M f RN u n(t) is bounded, vn(t) increases to a potential v(t)

'such that -Av(t) is the limit (in N(l) N)( ) of -AVn (t) (see e.g.

117]). Necessarily v(t) - EN * u(t) (at least a.e. t). Now ,by lemma 2, if

v - % a we have

0 0.0
n

on the other hand

V0V 0 V n V n Wt Yn, aee t

*y .0V(t) V 0 ;
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Hence v0 "V 0  and = U.

To complete the proof, let us prove (33). By accretivity in Ll(RN)

(see [5]), for any n, t:

f N lun(t) - Un(t)l < fRN 1Pn - 'n' = N 1n * ( <-L)I ' JRN f I* N
NR R R

We apply a Fatou-type lemma to finish.

Proof of theorem 4.

For N > 3, the existence of u is a consequence of the proposition

3.5. Using the particular structure of (u) = um , we add an argument to the

previous proof in order to absorb the cases N - 1,2 and to prove the

continuity results for all N.

Let in and un defined as in this proof. The estimates we established

are valid for any N. Hence (39) holds and a subsequence of un converges

a.e. to u E L O((T,-) x R) n L(0,T, L (R N)) solution of (31). Moreover, in

this particular case, we have

T
limf N (a)d = o uniformly in n

fNn
T+O 0 R

Indeed, by the L -estimate (see [3], [21])

C ,, I 6 with 1 2kUn( t)i =(-It with--- , 6 =-

L t n L m-1+ - N
N

Hence
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.........

T 1+6(M-1) T
(41) f f u(a)do 4 . . f t where (m-1)a < 1N nn 1 0 -)0 R L0O

t J m 1 N
In particular, for all t, f u (o)do C L (R ) and is the limit in

0
t

Lo (N) of f um(a)dO. By lemmas 2 and 3, u(t) converges in
kocn 0

a(M(R ), Cb(RN)) to some i when t + 0. Now, we can pass to the limit in

t
U(t) - n= A f u n ()do in D'(R N )

0

and obtain that V =

Remark that fRN Un(t) = fRN Pn + f RN f R N u(t). Hence un(t) con-

verges to u(t) in LI(RN) for a.e. t and even Vt > 0 by the

contraction property. The uniqueness proves the convergence of the whole

sequence.

N
By (39) for any open subset 9 relatively compact in (0,-) x R

(42) u1 1 ,2 ()4 C(f NiV)

And (41) gives

T ff N um(da < C * T1-G(m-1) U N I+6(m-1)

0R R

For the uniqueness when N = 1,2, given u, u solutions of (31), (32)

we apply theorem 1 to u(9 + T) (as well as u(, + T)) for any T > 0 to

prove that they coincide with the solutions in the sense of semigroups. Hence

(43) holds for u, u and we can apply the theorem 1 to u and u.

-23-
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Now, let U converge to i in U(M(RN), Cb(RN)) and un, u the

corresponding solutions. The same arguments as above using the estimates

(42), (43) plus the uniqueness result prove that un(t) converges to u(t)

in L1 (RN).
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